Suggested Exercises for Week 7

The following are suggested exercises for Week 7:

1. Milnor \& Stasheff 5A, 5B, 5E part 4, 4B, 4D, 6C, 6E. [Some of these are quite short.]
2. Here is a concrete construction of the Stiefel-Whitney classes. Given a real vector n dimensional bundle $V \rightarrow B$, let $P(V) \rightarrow B$ be the projectivization of V; that is, $P(V)_{b} \simeq$ $\mathbb{R} \mathbb{P}^{n-1}$ is the space of lines in V_{b} for every $b \in B$. Apply the Leray-Hirsch theorem of last week's exercise sheet to the fibration $\mathbb{R}^{\mathbb{P}^{n-1}} \rightarrow P(V) \rightarrow B$ to show that $H^{*}\left(P(V) ; \mathbb{Z}_{2}\right)=$ $H^{*}\left(B ; \mathbb{Z}_{2}\right) \otimes H^{*}\left(\mathbb{R P}^{n-1} ; \mathbb{Z}_{2}\right)$. Let $1, h, \cdots, h^{n-1}$ be a basis for $H^{*}\left(\mathbb{R P}^{n-1} ; \mathbb{Z}_{2}\right)$. Then the class h^{n}, as an element of $H^{*}\left(P(V) ; \mathbb{Z}_{2}\right)$, can be written as $h^{n}=w_{1} \otimes h^{n-1}+\cdots+w_{n-1} \otimes 1$ for some classes $w_{i} \in H^{i}\left(B ; \mathbb{Z}_{2}\right)$. We claim these are the Stiefel-Whitney classes. (In the case of a line bundle, one avoids the trouble that $h=0$ by first taking a Whitney sum with a trivial line bundle.) Prove this by showing they satisfy the axioms given in class.
3. Determine the reduced K-theory of the torus. [Hint: Consider suspensions.]
4. Show there is a three-dimensional real vector bundle over S^{4} which is not the direct sum of a one-dimensional bundle and a two-dimensional bundle. [You're missing one fact you need, which is that an arbitrary two-dimensional vector bundle over S^{4} can be given the structure of a complex line bundle. But otherwise you know enough to produce this example.]
